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Abstract
We apply the non-equilibrium statistical operator method to non-contact atomic
force microscopy, considering explicitly the statistical effects of (classical)
vibrations of surface atoms and associated energy transfer from the tip to the
surface. We derive several, physically and mathematically equivalent, forms of
the equation of motion for the tip, each containing a friction term due to the so-
called intrinsic mechanism of energy dissipation first suggested by Gauthier and
Tsukada. Our exact treatment supports the results of some earlier work which
were all approximate. We also demonstrate, using the same theory, that the
distribution function of the tip in the coordinate–momentum phase subspace is
governed by the Fokker–Planck equation and should be considered as strongly
peaked around the exact values 〈P 〉t and 〈Q〉t of the momentum and the position
of the tip, respectively.

1. Introduction

Non-contact atomic force microscopy (NC-AFM) [1–10] is becoming a powerful tool in the
study of the atomistic structure of the surfaces of real systems. In NC-AFM experiments a tip
with a nano-asperity is attached to a cantilever which oscillates above the sample surface. The
imaging mechanism is provided by maintaining a constant frequency shift in the cantilever
oscillations which is achieved by adjusting the equilibrium position of the cantilever in the
vertical direction for every lateral position of the tip above the surface.

It is well known that the cantilever oscillations are damped and, in order to keep the
oscillation amplitude constant, one has to apply an additional driving signal, usually of
sinusoidal form, Fd(t) = Ad sin(ωt), to the oscillating cantilever system, ω = 2π/T0 being
the oscillation frequency and T0 the oscillation period. The driving signal is changed during
the scan and recently [11] atomic resolution has been achieved in this, so-called dissipation
(or damping) signal.

Several models have been suggested to explain the damping in the NC-AFM system. In
reference [12] it is suggested that the damping may not be related to the energy dissipation,
but could be a consequence of a complex behaviour of the solution for the forced oscillations
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of the cantilever. However, this becomes unimportant if, when analysing the experimental
data, the actual equation of motion for the tip is considered as e.g. in references [13, 14].
Other authors [14–20] suggest various dissipation mechanisms, e.g. that there is some energy
transfer from the tip system to the surface leading to the damping of the cantilever oscillations.
In particular, the adhesion hysteresis mechanism, based on the assumption that the force field
is different on the approach and the retraction of the tip, is invoked in references [14–19].
In references [20–22] an intrinsic dissipation mechanism has been considered whereby there
is energy transfer from the tip to the vibrating surface atoms due to non-equilibrium effects,
resulting in the appearance of a friction force in the cantilever equation of motion. The
Langevin equation method has been used in references [20, 21], whereas in reference [22] a
Langevin-type equation for the tip has been derived from the Fokker–Planck equation for the
tip distribution function, f (T )(t), which has been obtained by integrating the corresponding
Liouville equation for the whole system (tip + surface). The coarse-graining approach [23,24]
has been used in references [20–22] to account for the non-equilibrium effects. Note that the
vibrating lattice has been treated classically in references [20–22].

The main objective of the present paper is to confirm the results of the previous study [22]
of the dissipation effects in the NC-AFM, using an exact non-equilibrium method not based
on such an artificial tool as the coarse graining. Indeed, instead of considering a distribution
function which satisfies the Liouville equation, in the coarse-graining approach one considers
its average taken over a time τ . This time is assumed to be much longer than any process to
be sampled over (e.g. atomic vibrations) and, at the same time, to be microscopic, i.e. very
small on the macroscopic scale (e.g. τ � T0). This time is not specified explicitly though, as
only terms which do not depend on τ are kept; terms proportional to τ are assumed to be small
and are dropped. As the result of this approach, there is always a certain amount of freedom
in keeping or dropping any terms which are e.g. linear with the coarse-graining time τ in any
final expression, so care is needed to obtain correct results.

We shall illustrate this point with an example from reference [22]. When deriving the
equation of motion for the tip [22], one finds the friction coefficient γ given as a time integral
of the autocorrelation function

γ (Q) =
∫ τ

0
〈�X(t)�X(t + s)〉eq ds

with τ as the upper limit, where �X = X − 〈X〉eq is the fluctuating part of the tip–surface
force, 〈· · ·〉eq being an equilibrium average when the tip is fixed at some Q above the surface.
Now, we note that this expression can also be written in the following equivalent form:
γ (Q) = γ1(Q)− τ 〈X〉2

eq , where

γ1(Q) =
∫ τ

0
〈X(t)X(t + s)〉eq ds

is the time integral of the correlation function of the forceX itself. Within the coarse-graining
method, either expression, γ (Q) or γ1(Q), can be used for the friction, as they differ only by
a term linear in τ . However, the correlation function 〈X(t)X(t + s)〉eq tends to a finite limit
〈X〉2

eq as s → ∞, whereas

lim
s→∞〈�X(t)�X(t + s)〉eq = 0.

Therefore, if one wants to extend the upper limit in the time integrals in the transport coefficient
to infinity as is usually done, only correlation functions of fluctuations of the dynamical
variables are to be used: �X in the NC-AFM case. This may require adding certain terms
linear in τ in the final expression within the coarse-graining method to ensure the proper
behaviour of the corresponding correlation functions.
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In the non-equilibrium statistical operator method (NESOM) developed originally by
Zubarev (see references [24, 25]) no artificial parameters are involved and this method is
considered to be the exact formulation of irreducible processes in many-body classical or
quantum systems which are arbitrarily far away from equilibrium. Therefore, it is of great
importance to consider the NC-AFM system using this method and to confirm the results of
the earlier treatments [20–22].

We note that our consideration here will also be entirely classical, i.e. we ignore quantum
effects while considering atomic vibrations of the surface. We note that classical treatment of
surface atoms is justified at temperatures which are around or higher than the corresponding
Debye temperature of the crystal. In the case of room temperature NC-AFM experiments
there are many crystals (e.g. RbF, RbCl, RbBr, NaBr, NaI, KCl, KBr, BaO) which satisfy this
condition. In other cases including the low-temperature AFM experiments [26,27] a quantum
treatment is necessary. However, the entirely quantum description of the NC-AFM system
appears to be rather complicated. That is why we decided that it would be appropriate to
consider the classical problem first. After all, the previous work [20–22] was also done within
this approximation. We are working on the quantum analysis at the moment and it will be
published separately. Note that electrons enter the theory indirectly via the atomic potential
energy surface that they produce within the Born–Oppenheimer approximation and can be
assumed to be entirely quantum objects. This means that potential energies for atoms entering
the Hamiltonian in our model (see below) are assumed to be calculated using a quantum
mechanical description for the electrons.

The plan of the paper is as follows. In section 2 we present the main ideas of the NESOM to
facilitate the reading of the further sections and also to introduce our notation. In section 3 we
derive the generalized Langevin equation (with memory effects) for the tip with the friction term
built in. The latter term is given in accordance with the fluctuation-dissipation theorem [28–30]
as the time integral of the autocorrelation function of the fluctuating part�X of the tip–surface
force, X. The time integration is carried out from zero to infinity with the proper factor
ensuring the convergence of the integral at the upper limit. No artificial coarse-graining time
is introduced. Note that the equation derived is highly non-linear. However, within the same
approximation, it can be linearized (section 3.4) and then, in the Markovian approximation,
appears to be identical to the Langevin equation derived previously [21, 22]. In section 4 the
Fokker–Planck equation for the tip is then derived, which, in the Markovian approximation,
is shown to be identical to that derived previously in reference [22] using the coarse-graining
approach. Two methods are used to derive the Fokker–Planck equation in section 4. It is also
shown in section 4 that a somewhat different form of the Langevin equation follows from the
Fokker–Planck equation. Finally, in section 5 we discuss all forms of the Langevin equation
obtained and their relation to each other and show that, from the physical and also mathematical
points of view, they are all equivalent.

2. The NESOM

The NESOM can be considered as a direct extension of the Gibbsian ensembles from
equilibrium to non-equilibrium many-body systems. As in the coarse-graining approach, in the
NESOM one has to decide what timescale is of interest so that all degrees of freedom of the given
system can be divided into fast (to be sampled or averaged over) and slow (to be considered
explicitly) components. However, the further analysis does not rely on any specific time τ and,
at least in principle, is exact. A reduced description of the system is used in which a certain
incomplete level of consideration is chosen. Then, only such solutions ρ(t) of the Liouville
equation are considered (the true non-equilibrium distribution) as originate from some specific
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initial (at t = −∞) distribution function, called the relevant distribution, ρrel , based upon a set
of so-called relevant dynamical variables, {℘m}, specific for the chosen level of the reduced
description. The relevant variables are some functions of the coordinates and momenta of all or
some particles of the whole system. The relevant distribution describes generalized Gibbsian
ensembles, called relevant statistical ensembles, which are characterized by a set of exact
statistical averages 〈℘m〉t calculated using the true distribution ρ(t), i.e. 〈℘m〉t = Tr{ρ(t)℘m}.
Here and in the following we use the trace symbol Tr to indicate the integration over the entire
phase space � (all coordinates and momenta).

The relevant distribution is obtained by maximizing the information entropy Sinf [ρrel] =
−Tr(ρrel ln ρrel) of the system under the auxiliary conditions that the averages 〈℘m〉rel =
Tr{ρrel℘m} of the relevant variables calculated using ρrel coincide exactly with the exact
averages 〈℘m〉t (the so-called self-consistency conditions). This is achieved by using a set
of Lagrange multipliers which enter the expression for the relevant distribution. The exact
averages depend on time (as does the true distribution, ρ(t)), so the Lagrange multipliers and,
therefore, the relevant distribution also implicitly depend on time.

It should be noted [24] that the Liouville equation alone does not give a unique solution
and is very sensitive to any additional even infinitesimally small terms which can break the
time-reversal symmetry inherent to the equation. Mathematically, the desired solution in the
NESOM is obtained by solving the following Liouville equation with broken time-reversal
symmetry: (

∂

∂t
+ iL̂

)
ρ(t) = −ε{ρ(t)− ρrel(t)} (1)

where L̂ is the Liouville operator of the whole system (for any dynamical variable " of the
system, iL̂" = {", Ĥ }, where {. . . , . . .} is the Poisson bracket and Ĥ the total Hamiltonian),
and the limit ε → +0 is implied in all averages calculated with ρ(t) after taking the
thermodynamic limit. Equation (1), which will be referred to in the following as the broken-
symmetry Liouville equation for brevity, differs from the ordinary Liouville equation by an
extra infinitesimal (source) term in the right-hand side. Its purpose is to pick up the proper
solution ρ(t) evolved from ρrel(t) at t = −∞. The source term is equivalent to introducing
boundary conditions for the Liouville equation at t = −∞, so that the correct retarded solution
bounded by ρrel(t) at t = −∞ is obtained. This is also similar to the well known prescription
in the scattering theory [24, 31] whereby a particular retarded solution (the outcoming wave)
is selected for the given incoming (initial) wave at t = −∞ by adding an extra source term to
the Schrödinger equation which is then set to zero at the end of the calculation. Equation (1)
is the basis of the NESOM and allows for the exact consideration of any irreversible processes
in many-body non-equilibrium statistical mechanics.

The choice of the proper set of the relevant variables {℘m} is of principal importance
for any problem under study. The particular choice is dictated by the corresponding level of
the reduced description required and by the desired set of evolution (kinetic) equations to be
derived. Thus, {℘m} should contain as a subset such variables as correspond to the desired set
of the observables, 〈℘m〉t . Once the true non-equilibrium distribution ρ(t) is calculated from
equation (1), the kinetic equations for the observables 〈℘m〉t are obtained from the relations [24]

∂〈℘m〉t
∂t

= Tr

{
∂ρ(t)

∂t
℘m

}
= Tr{℘̇mρ(t)} (2)

where the broken-symmetry Liouville equation (1) has been used in the derivation of the
last expression, followed by the self-consistency conditions and integration by parts. The
dynamical variable ℘̇m = iL̂℘m = {℘m, Ĥ } is called the generalized flux associated with
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℘m. Since the relevant distribution ρrel(t) depends implicitly on the observables 〈℘m〉t (recall
that the Lagrange multipliers are some functions of these because of the self-consistency
conditions), the true distribution ρ(t) will also be some non-linear function of them. As a
result, equations (2) (for ∀m) become a closed set of generalized transport equations for the
chosen set of observables which could be, however, of an extremely formidable form.

Several choices of the relevant variables will be discussed in the present paper for the
problem that we are interested in, namely of forced oscillations of the cantilever in the NC-
AFM system. We shall show that one choice leads to the Langevin equation for the tip,
whereas another leads to the corresponding Fokker–Planck equation which, upon integration,
results in a slightly different type of Langevin equation. We will demonstrate, however, that
from the physical point of view either equation describes correctly the NC-AFM system and
corresponds to the same reduced level of system consideration.

3. Derivation of the Langevin equation for the tip

3.1. Relevant variables and the relevant distribution

We start from the microscopic classical Hamiltonian Ĥ for the whole system consisting of the
tip and surface atoms connected to a heat bath kept at the constant temperature T :

Ĥ (pqPQ) = Hs +HT = (Hpq +&Qq) +

(
P 2

2M
+ UQ

)
. (3)

The tip is described by its vertical coordinate, Q, and the conjugate momentum, P , while the
surface is described by the coordinates q and momenta p of all of its atoms. In equation (3)
Hpq is the Hamiltonian of the surface atoms, &Qq their interaction with the tip, P 2/2M the
kinetic energy and UQ the potential energy of the tip (the elastic energy, 1

2k(Q −Qeq)
2, and

the energy associated with the driving signal, −Fd(t)Q). Here M is the tip effective mass, k
the elastic constant andQeq the equilibrium position of the tip. Because of the q-dependence,
the force acting on the tip,X(Qq) = −∂&Qq/∂Q, fluctuates rapidly around its average value.
The potential energy, UQ, in equation (3) gives rise to some external force Y (Q) (elastic and
driving forces) acting on the tip which is changing with time on a much longer timescale than
atomic vibrations. For convenience, we shall call Hs = Hpq + &Qq the surface Hamiltonian
and HT = P 2/2M + UQ the tip Hamiltonian as indicated in equation (3).

We are interested here in the oscillations of the macroscopic tip representing a very
slow subsystem, atomic vibrations being a very fast one. Therefore, in the present problem
the desired level of reduced description is achieved by considering any functions of the tip
coordinate and momentum, Q and P , as the relevant variables. As in this section we would
like to derive the Langevin equation for the tip which is of the general form of the equation of
motion, i.e. the derivative ∂〈P 〉t /∂t equal to the total force, it is reasonable to choose Q and
P in the set of relevant variables.

This is somewhat similar to the Brownian motion, as has already been suggested in
references [20–22], since we are dealing here with a single slow and massive particle (the
tip) interacting with light atoms performing very fast movements (vibrations). In the case
of the Brownian motion with no external field applied, all positions in space are equivalent
and just two dynamical variables, namely the total Hamiltonian of the system, Ĥ , and the
particle momentum, P , are sufficient for the derivation of its equation of motion (the Langevin
equation) [24]. In the case of the NC-AFM, however, such description is insufficient as there is
a Q-dependent force applied to the tip (both the elastic force and the tip–surface interaction);
the translational symmetry is broken and so the coordinateQ of the tip has to be also considered
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alongside P and Ĥ as another relevant variable. Note that the Hamiltonian Ĥ is to be included
in the list of relevant variables, since in our treatment the total energy of the whole system
(surface + tip) is conserved and has a certain value.

The relevant distribution is obtained in the standard way [24] by maximizing the
information entropy subject to the auxiliary self-consistency conditions

〈P 〉t = Tr{ρrel(t)P } (4)

〈Q〉t = Tr{ρrel(t)Q} (5)

and is given by

ρrel(t) = 1

Z(t)
exp{−β[Ĥ − V (t)P − F(t)Q]} (6)

where β and the functions V (t) and F(t) play the role of Lagrange multipliers. Since we
assume that the temperature is constant anywhere in the system and is set to T (the macro-
scopically large surface performs as a heat bath), the Lagrange multiplier β can be simply
chosen as β = 1/kBT . The other two Lagrange multipliers, V (t) and F(t), are found from
the self-consistency conditions (4) and (5), whereas the normalization factor is given as

Z(t) = Tr exp{−β[Ĥ − V (t)P − F(t)Q]}. (7)

The integration in the right-hand side of equation (4) is easily performed using the substitution
P ′ = P −MV , and we get the same expression for the Lagrange multiplier V (t) as for the
Brownian motion [24]:

V (t) = 〈P 〉t
M

≡ Pt

M
. (8)

This has the physical meaning of the tip velocity. Note that the shortened notation Qt and Pt
will often be used hereafter for the exact averages 〈Q〉t and 〈P 〉t , respectively.

Unfortunately, it is not possible to obtain an explicit expression for the other Lagrange
multiplier, F(t), as an explicit function of the observables Qt and Pt because the integration
over q and Q in the right-hand side of equation (5) cannot be performed analytically in the
general case. One can easily recognize, however, that a contribution due to the integration
over the momenta p and P cancels out exactly with the corresponding contribution in Z(t),
equation (7). We conclude, therefore, that F(t) depends only onQt , not on Pt . Several useful
exact identities can also be derived as shown in appendix 1. We will be using them later on in
our further analysis.

To understand the physical meaning of F(t), we consider the average 〈Ṗ 〉rel of the
generalized flux Ṗ = iL̂P = {P, Ĥ } = −∂(&Qq + UQ)/∂Q. This is a dynamical variable—
the force acting on the tip. Since Ṗ = −∂Ĥ/∂Q, one can perform the Q-integral in equation
(5) by parts. The calculation is straightforward and gives immediately

F(t) = −〈Ṗ 〉rel (9)

where

〈Ṗ 〉rel = −k(Qt −Qeq) + 〈X(Qq)〉rel + Fd(t) (10)

can be considered as an average force (see the end of this subsection). Note that the self-
consistency condition (5) for the tip coordinate has been used here. Thus, the Lagrange
multiplier F(t) corresponds to the minus force acting on the tip which is calculated using the
relevant distribution. Equation (9) can be considered as an algebraic equation for the Lagrange
multiplier F(t) as a function of Qt (note that the average 〈X(Qq)〉rel does not depend on Pt
since the P -integration can be performed explicitly there, giving a factor which cancels out
with the corresponding term in Z(t), equation (7)).
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In order to clarify the physical meaning of F(t) even further, let us consider the relevant
distribution (6) in more detail. Using explicit expressions for the Lagrange multipliers (8), (9)
and (10), one can rewrite the relevant distribution in the following equivalent form:

ρrel(t) = ρeq(pq|Q)/(PQ, t) (11)

where

ρeq(pq|Q) = 1

Zs(Q)
e−βHs (12)

is the equilibrium distribution of the surface atoms calculated for the tip fixed at Q, and

Zeq(Q) = tr exp(−βHs) (13)

is the corresponding Q-dependent surface partition function. Note that the equilibrium
distribution weakly depends on Q as is indicated above. Here and in the following, the
symbol tr · · · = ∫

dp dq · · · means the trace calculated with respect to the surface variables
only (i.e. the integration with respect to p, q). The function

/(PQ, t) = 1

Z1(t)
exp

{
0(Q)− β

2M
(P − Pt)

2 − βk

2
(Q−Qt)

2

}
(14)

in equation (11) serves as an envelope function. Indeed, the function

0(Q) = −β(〈X〉rel + Fd)(Q−Qeq) + lnZeq(Q)

is some function changing relatively weakly with the tip position, Q, and Z1(t) is the
corresponding normalization factor. One can see that the relevant distribution is given as
a product of the surface equilibrium distribution, ρeq , and two Gaussians, one centred at Qt

and another at Pt , which are the exact average position and momentum of the tip at time t .
Note that the elastic constant k = ω2

0M is very large owing to the large effective mass of the
tip M and, therefore, the quadratic term proportional to k in the exponential dominates the
Q-dependence. Thus, the relevant distribution is strongly (in fact, in a δ-like fashion in the
M → ∞ limit) peaked around the exact position of the tipQt at any time t , and is Maxwellian
with respect to its momentum with the average value equal to the exact momentum Pt . This
property of the relevant distribution will be used later on in section 3.4 to shed more light on
the kinetic equation that we derive in section 3.3.

It follows from the form of the relevant distribution just discussed that for any dynamical
variable "(Qq) not depending on momenta one has

〈"(Qq)〉rel � 〈"(Qtq)〉eq . (15)

Note that the equilibrium average above is calculated at the exact position of the tip, Qt .
Therefore, we can approximately substitute for 〈X(Qq)〉rel in equation (10) the equilibrium
force 〈X(Qtq)〉eq . This means that the Lagrange multiplier F(t) is approximately equal to
the minus force acting on the tip in equilibrium when the tip is fixed at Qt above the surface.
We shall demonstrate in section 3.4 that the result in equation (15) is correct up to the order
of 1/M .

3.2. Solution of the Liouville equation

To derive the kinetic (transport) equation for Pt (the equation of motion for the tip or the
Langevin equation), we first have to solve the broken-symmetry Liouville equation (1). First
of all, we note that the solution of the Liouville equation (1) can be formally written as follows:

ρ(t) = ρrel(t) +�ρ(t) (16)
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�ρ(t) = −
∫ t

−∞
e−ε(t−t ′)e−i(t−t ′)L̂

{
∂

∂t ′
+ iL̂

}
ρrel(t

′) dt ′ (17)

where L̂ is the total Liouville operator of the whole system. The Langevin equation is then
obtained by calculating the derivative ∂Pt/∂t . Substituting equation (16) into equation (2)
which is written for the relevant variable P , we have

∂Pt

∂t
= 〈Ṗ 〉rel + Tr{Ṗ �ρ(t)}. (18)

Therefore, formally the Langevin equation sought for is obtained by substituting �ρ(t) from
equation (17) into the right-hand side of equation (18). Although this result is exact, we note
that it is very difficult to calculate �ρ(t) in practice because of the exponential operator in
equation (17) containing the Liouville operator. Before we introduce certain approximations,
some simplifications are necessary.

Our further treatment is in parts similar to that presented in reference [22]. We split the
Liouville operator L̂ into two contributions: L̂0 and L̂T . The operator L̂0 is associated with
the surface atoms only and is related to the surface Hamiltonian, Ĥs (i.e. for any dynamical
variable A we have iL̂0A = {A, Ĥs}). The other component of L̂ is the Liouville operator of
the tip:

L̂T = P

M

∂

∂Q
− {−k(Q−Qeq) +X(Qq) + Fd(t)} ∂

∂P
(19)

where the expression in the curly brackets is the total force, Ṗ = −∂Ĥ/∂Q, acting on the tip;
see equation (3).

In order to calculate ρ(t) according to equations (16) and (17), we should first calculate
(∂/∂t)ρrel(t) and iL̂ρrel(t). Let us start from the latter term: iL̂ρrel = iL̂0ρrel + iL̂T ρrel . The
first term is zero since the operator iL̂0 (associated with the surface HamiltonianHs) acts only
on the surface variables p, q and the relevant distribution ρrel ∼ exp(−βHs) with respect to
these variables:

iL̂0ρrel(t) = 0. (20)

This is easily checked by inspection. Then, using equations (19) and (6), one can calculate
iL̂T ρrel and get

iL̂ρrel(t) = β

M
ρrel(t)(Ṗ Pt − 〈Ṗ 〉relP ). (21)

To calculate (∂/∂t)ρrel(t) we note that the time dependence of the relevant distribution
originates exclusively from that of the Lagrange multipliers V (t) and F(t). Using the explicit
expression for the relevant distribution, equations (6) and (7), the derivatives δρrel/δV (t) and
δρrel/δF (t) are easily calculated to give

∂ρrel(t)

∂t
= βρrel(t)

[
(Q−Qt)

∂F

∂t
+

1

M
(P − Pt)

∂Pt

∂t

]
(22)

where we also used equation (8). The derivative ∂F/∂t is calculated in appendix 1. To
calculate the derivative ∂Pt/∂t , we make use of equation (18). Collecting all terms together,
we arrive at the following expression for the term immediately after the exponential operator
in the expression for �ρ(t) in equation (17):{
∂

∂t
+ iL̂

}
ρrel(t) = β

M
ρrel(t)

[
(Ṗ − 〈Ṗ 〉rel +

1

β

Q−Qt

〈Q2〉rel −Q2
t

)Pt + (P − Pt)Tr{Ṗ �ρ(t)}
]
.

(23)
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This expression is still exact. Substituting it into equation (17), we obtain a very complicated
equation for�ρ(t). It can be solved, however, approximately if a small parameter is introduced
into the theory.

Since in equilibrium 〈P 2〉 = M/β and, therefore, P ∼ √
M , we notice that the

operator L̂T ∼ M−1/2. Similarly, the surface Liouville operator L̂0 ∼ m−1/2 where m is
the characteristic mass of a surface atom. Since m � M , the Liouville operator of the tip
is much smaller than that of the surface. This allows us to use a kind of perturbation theory
to solve the equation for �ρ(t). This method is equivalent to that used in the theory of the
Brownian motion [24, 28, 29]. Employing η = (m/M)−1/2 as the small parameter, we see
that the first term in equation (23) is of the order of η; the second term there contains a factor
which is also of the order of η. By solving the equation for �ρ(t) iteratively, we can keep
only the first term which is, in fact, equivalent to dropping the second term in equation (23)
which contains �ρ(t). Thus, to the first order in η, the exponential operator in equation (17)
acts only on the first term in equation (23).

Our next step will be simplifying the exponential operator. It can also be expanded in a
series with respect to the small parameter η. As the expression which the exponential operator
in equation (17) is acting upon is already of the order of η, it is sufficient to keep only the very
first term in the expansion. Thus, it is sufficient to substitute for L̂ in the exponential operator
in equation (17) the Liouville operator of the surface, L̂0:

�ρ(t) � −
∫ t

−∞
e−ε(t−t ′)Ŝ

{
∂

∂t ′
+ iL̂

}
ρrel(t

′) dt ′ (24)

where

Ŝ = e−i(t−t ′)L̂0 . (25)

Before we apply the operator Ŝ to the first term in the right-hand side of equation (23), we
first note that this operator commutes with the relevant distribution because of equation (20).
Secondly, the operator L̂0 (and, therefore, Ŝ) acts only on the surface variables, p and q,
and there is only one dynamical variable in equation (23), namely Ṗ , which depends on q.
Therefore, we get

�ρ(t) � − β

M

∫ t

−∞
e−ε(t−t ′)ρrel(t ′)

{
ŜṖ − 〈Ṗ 〉rel +

1

β

Q−Qt ′

〈Q2〉rel −Q2
t ′

}
Pt ′ dt ′. (26)

3.3. The kinetic equation for the tip

The desired kinetic equation for the dynamical variableP is now obtained by substituting�ρ(t)
from equation (26) into the right-hand side of equation (18) and using the identity (A1.5):

∂Pt

∂t
= 〈Ṗ 〉rel − β

M

∫ t

−∞
e−ε(t−t ′)

{
〈Ṗ ŜṖ 〉rel − 〈Ṗ 〉2

rel −
1

β2

1

〈Q2〉rel −Q2
t ′

}
〈P 〉t ′ dt ′. (27)

Note that in all of the averages in the curly brackets the relevant distribution is taken at time t ′

and the operator Ŝ depends on the time difference t − t ′ > 0.
This result can be further simplified if we use the explicit expression for the force:

Ṗ = �X(Qq) + 〈X(Qq)〉rel − k(Q−Qeq) + Fd(t). (28)

Here �X represents a fluctuating part of the tip–surface force, �X = X − 〈X〉rel , since
according to equation (15), 〈X(Qq)〉rel is the average force acting on the tip fixed at its exact
positionQt at time t . Then, the surface Liouville operator L̂0 acts only on the surface variables,
so the Ŝ-operator in 〈Ṗ ŜṖ 〉rel (see equation (27)) acts only on the fluctuating part of the tip–
surface force leaving the other components in the total force (28) intact. Note that the average
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force 〈X(Qq)〉rel depends only on time via the time dependence of the Lagrange multipliers
in the relevant distribution. Then a somewhat lengthy though straightforward manipulation
yields

〈Ṗ ŜṖ 〉rel − 〈Ṗ 〉2
rel = 〈�X Ŝ �X〉rel + k2(〈Q2〉rel −Q2

t ′)− 2k(〈QX〉rel −Qt 〈X〉rel). (29)

Two identities have been used: 〈XŜ"〉rel = 〈"X〉rel and 〈"ŜX〉rel = 〈"X〉rel . These are
valid for any dynamical variable " = "(PQt) not depending on the variables p, q of the
surface atoms. The first identity follows from the fact that the operator Ŝ acts only on dynamical
variables which depend explicitly on the surface variables p, q; therefore Ŝ" = ". To prove
the second identity, we note that ŜX(Qq) = X(Qq ′), where q ′ is the column vector of atomic
coordinates evolved from q during the time t ′ − t when the tip is fixed at Q 1. The integration
with respect to p, q in the average 〈"(PQt)X(Qq ′)〉rel is then performed by transforming to
the variables p′q ′ (associated with time t ′) and using the fact that a volume of the phase space
associated with the surface variables (the HamiltonianHs , the Liouville operator L̂0) does not
change during the evolution when the tip is fixed: dp dq = dp′ dq ′.

Using equation (29) in equation (27) and also substituting for 1/β there using equation
(A1.6), we obtain

∂Pt

∂t
= 〈Ṗ 〉rel − β

M

∫ t

−∞
e−ε(t−t ′)〈�X Ŝ �X〉relPt ′ dt ′ + δ〈Ṗ 〉 (30)

where

δ〈Ṗ 〉 = β

M

∫ t

−∞
e−ε(t−t ′)(〈QX〉rel −Qt ′ 〈X〉rel) ∂〈X(Qq)〉rel

∂Qt ′
Pt ′ dt ′ (31)

is a correction term. In order to write it down in this form, equation (A1.4) has also been used.

3.4. Linearization

The transport (kinetic) equation (30) obtained above is highly non-linear. Indeed, the averages
there are calculated with respect to the relevant distribution which depends, in a rather
complicated way, on the quantities Pt and Qt (see section 3.1). It can, however, be linearized
owing to the large elastic constant k = ω2

0M of the tip (cf. the end of section 3.1).
First of all, let us calculate the normalization constant Z(t), equation (7). The integration

with respect to P is straightforward:

Z(t) = ZP

∫
dQ e−β4(Q) (32)

where

ZP =
√

2πM

β
exp

[
βP 2

t

2M

]
and we have introduced a Q-dependent function

4(Q) = 1

2
k(Q−Qeq)

2 − [F(t) + Fd(t)]Q− 1

β
lnZeq(Q) (33)

where Zeq(Q), the surface partition function (13), results from the integration with respect to
the surface variables. The first term in equation (33) dominates, so the main contribution to the
integral will be due to some vicinity of 4(Q) around its minimum at Q = Q0, 4′(Q0) = 0.
Therefore, the Q-integration in equation (32) can be performed asymptotically for large k

1 Since t ′ − t < 0, the coordinates q ′ correspond to the evolution reversed in time.
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using the steepest-descent method [32,33]. First, we calculate the tip coordinate,Q0, at which
the function 4(Q) is minimum. Using the fact that

d

dQ
lnZeq(Q) = 1

Zeq(Q)

dZeq(Q)

dQ
= β

〈
−∂&Qq

∂Q

〉
eq

= β〈X(Qq)〉eq (34)

where equation (13) has been used, and setting the derivative 4′(Q) to zero, one finds

−F(t) = −k(Q0 −Qeq) + 〈X(Q0q)〉eq + Fd(t). (35)

That is, the Lagrange multiplier is equal to the minus force acting on the tip at Q = Q0.
Then, expanding the function4(Q) aroundQ0 and dropping all terms beyond the square one,
we have

Z(t) = ZP

√
2π

β4′′(Q0)
e−β4(Q0) + O

(
1

M

)
(36)

where

4′′(Q0) = k − d

dQ0
〈X(Q0q)〉eq (37)

is the second derivative of the function 4(Q). Note that 4′′(Q0) > 0 which is the necessary
condition for the stability of the NC-AFM system: the elastic force should be greater than the
tip–surface force in order to prevent the tip from ‘jumping to contact’; see equation (35).

Similarly one can calculate 〈Q〉rel using the steepest-descent method and the result will
be simply Q0. Using the self-consistency condition (5), we therefore find

Q0 � Qt ≡ 〈Q〉t . (38)

Comparing this formula with equation (35), we obtain

−F(t) = −k(Qt −Qeq) + 〈X(Qtq)〉eq + Fd(t) ≡ 〈Ṗ 〉eq (39)

so, asymptotically, the Lagrange multiplier F(t) is equal to the minus force acting on the tip
in equilibrium when the tip is fixed at Qt at every time instant t . We have already mentioned
this (without a rigorous proof though) at the end of section 3.1.

Now we consider an average with respect to the relevant distribution of an arbitrary function
"(Qq) which changes with the distance Q from the surface not faster than an exponential
function. Again, we use the method of steepest descent to calculate the average:

〈"(Qq)〉rel = ZP

Z(t)

∫
dQ e−β4(Q)〈"(Qq)〉eq .

Expanding 4(Q) up to the square term around Qt as above and using equation (36) for the
normalization constant, we obtain equation (15) since k ∼ M . Note that this equation has
been given before in section 3.1 without proof, using a sort of intuitive argument.

The general expression just derived can be used to linearize our transport equation (30)
for the tip oscillations. Indeed, first of all, all averages there with respect to the relevant
distribution can be substituted for with the corresponding equilibrium averages calculated
at the exact position Qt of the tip at time t . In addition, within the same approximation,
〈QX〉rel � 〈QtX(Qtq)〉eq = Qt 〈X(Qtq)〉eq and Qt 〈X(Qq)〉rel � Qt 〈X(Qtq)〉eq , so the
correction term, equation (31), can be dropped. Therefore, we obtain the following linearized
transport equation for the tip:

∂Pt

∂t
= 〈Ṗ 〉eq − β

M

∫ t

−∞
e−ε(t−t ′)〈�X Ŝ �X〉eqPt ′ dt ′ (40)



1450 M Y Mo and L Kantorovich

where 〈Ṗ 〉eq is calculated at Qt and is given by equation (39). The correlation function

〈�X Ŝ �X〉eq = tr{ρeq �X(Qt ′q)e
−i(t−t ′)L̂0 �X(Qt ′q)} = tr{ρeq �X(Qt ′q)�X(Qt ′q

′)}
(41)

is also calculated in equilibrium for the same position of the tip (fixed at Qt ′ ); the atomic
coordinates q ′ are calculated from their initial coordinates and momenta, q and p, using
classical mechanics (the HamiltonianHs) after the time lapse t− t ′. Note that, within the same
approximation, the fluctuation of the tip–surface force, �X = X − 〈X〉rel , is calculated here
with respect to the force 〈X(Qq)〉rel � 〈X(Qt ′q)〉eq in equilibrium. The transport equation
obtained is the central result of this section.

The transport equation (40) describes the tip oscillations taking into account the fact
that, because of the constant movement, the tip never allows the surface atoms to reach full
equilibrium. As a result of this completely non-equilibrium phenomenon, the tip experiences
a certain response linear in the tip velocity which is described by the second term in the
right-hand side of equation (40).

Note that the equation that we just obtained is more general than the one derived previously
[20–22] as it contains non-Markovian memory effects as well. In fact, this is a generalized
Langevin equation [28, 29, 34, 35]. If one assumes, however, that the correlation function
(41), which depends on the time difference |t − t ′|, decays much faster than the characteristic
time associated with the tip, i.e. that the tip velocity does not change appreciably during the
relaxation time (and this can indeed be verified only by an explicit calculation yet to be done),
then one can use the Markovian approximation. Indeed, only the times t ′ close to t at the upper
limit in the integral in equation (40) contribute, so one can take the tip momentum Pt ′ out of
the integral and calculate it at time t . Then essentially the same Langevin equation for the tip
as in references [20–22] is finally obtained:

∂Pt

∂t
= −k(Qt −Qeq) + 〈X(Qtq)〉eq + Fd(t)− β

M
γ (Qt)Pt . (42)

Here

γ (Q) =
∫ ∞

0
e−εs〈�X(Qq)eisL̂0 �X(Qq)〉eq ds (43)

is the friction coefficient and, in order to write it in this form, we have used the substitution
s = t− t ′ as well as the fact that the correlation function in the integrand is an even function of
time. Note that the exponential factor e−εs in equation (43), which ensures convergence of the
integral at the upper limit, appears automatically in the expression for the friction coefficient
γ (Qt) above. We recall that it has been introduced in reference [22] somewhat artificially
when the coarse-graining time τ at the upper limit in the time integral was extended to infinity.
One can appreciate that the NESOM leads to this result automatically without using any tricks.

One important remark is now in order. The kinetic (transport) equation for the tip (40) has
been derived in this section by calculating the corresponding averages in the exact equation
(30) asymptotically up to the first order. In fact, the same result, equation (40), can be obtained
directly by using the steepest-descent method consistently from the very beginning. This
calculation is somewhat simpler and some details of it can be found in appendix 2.

4. The Fokker–Planck equation for the tip

The kinetic (transport) equation derived in the previous section gives useful but rather limited
information about the tip: for every t , only the average position and momentum of the tip can
be calculated. If one is interested in calculating other quantities which are functions of the
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variables P andQ, one needs to know the tip distribution function, f (T )(PQ, t), at every time
moment t . In this case a somewhat different analysis may be necessary.

4.1. The Fokker–Planck equation: the ‘natural’ choice of relevant variables

Since the tip distribution function can be obtained from the true distribution function ρ(t) ≡
ρ(pqPQ, t) of the whole system upon reduction with respect to the surface variables (i.e. by
integrating with respect to p, q):

f (T )(P0Q0, t) = tr{ρ(pqP0Q0, t)} ≡ Tr{δ(P − P0)δ(Q−Q0)ρ(pqPQ, t)} (44)

it is natural (cf. reference [25]) to consider a continuous set of dynamical variables

{℘m} ⇒ {δ(P − P0)δ(Q−Q0)}
(alongside the total Hamiltonian of the whole system, Ĥ , equation (3)), as a set of relevant
variables in this case. Note that the set {δ(P − P0)δ(Q − Q0)} is continuous since we are
interested in the tip distribution function in the whole phase space, �T = (P0Q0), associated
with the tip.

The corresponding relevant distribution in this case is given by

ρrel(pqPQ, t) = 1

Z(t)
exp

{
−βĤ −

∫
6(P0Q0t)δ(P − P0)δ(Q−Q0) dP0 dQ0

}
= 1

Z(t)
exp{−βĤ −6(PQt)} (45)

where β and 6(PQt) are the corresponding Lagrange multipliers. As in our previous
treatment, we fix β = 1/kBT as the inverse temperature. The functions 6(PQt) are to
be calculated from the corresponding self-consistency conditions:

〈δ(P − P0)δ(Q−Q0)〉rel = 〈δ(P − P0)δ(Q−Q0)〉t ≡ f (T )(P0Q0, t). (46)

Using the explicit expression for the system Hamiltonian, equation (3), which we split into
two parts, Hs and HT , and calculating the integral in the left-hand side of equation (46) using
the current choice of the relevant distribution, equation (45), one gets

f (T )(P0Q0, t) = Zeq(Q0)

Z(t)
exp{−βHT (P0Q0)−6(P0Q0t)}

where Zeq(Q) is the surface partition function in equilibrium, equation (13). This expression
shows that the self-consistency condition (46) can be solved with respect to the Lagrange
multipliers 6(P0Q0t) explicitly. Comparing the last expression with equation (45) for the
relevant distribution, we find

ρrel(pqPQ, t) = e−βHs

Zeq(Q)
f (T )(PQ, t) = ρeq(pq|Q)f (T )(PQ, t). (47)

Thus, for this particular choice of the relevant variables, the relevant distribution takes an
especially simple form and is given as a product of the equilibrium distribution ρeq of surface
atoms, equation (12), and of the true tip distribution. Note that the equilibrium distribution,
ρeq ≡ ρeq(pq|Q), depends parametrically on the tip position Q.

A standard method of deriving the Fokker–Planck equation for the tip consists of the
integration of the both sides of the Liouville equation with respect to the surface variables
p, q [22]. This is exactly the same method as is used for the Brownian particle in the kinetic
theory of liquids [23, 35, 36]. We shall use the same approach, but the starting point for us
in the NESOM should be the broken-symmetry Liouville equation (1). Therefore, taking the
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trace tr{· · ·} = ∫
dp dq · · · from both sides of equation (1) and making use of the fact that,

according to equations (44) and (47),

tr{ρ} = tr{ρrel} (48)

we get
∂

∂t
f (T )(PQ, t) = −tr{iL̂ρ(t)} ≡ 0. (49)

Splitting the Liouville operator into two parts, the surface part, L̂0, and the tip part, L̂T , we
first notice (using integration by parts and assuming that ρ ≡ 0 at the boundaries of the surface
phase space �s = (pq)) that tr{iL̂0ρ(t)} = 0, so only the operator L̂T contributes to0. Using
the explicit expression (19) for L̂T , one finds

0 = − P

M

∂f (T )

∂Q
− (〈X(Qq)〉eq + Y (Q, t))

∂f (T )

∂P
− ∂

∂P
tr{(X(Qq) + Y (Q, t))�ρ} (50)

where Y (Q, t) = −k(Q −Qeq) + Fd(t) is the sum of the elastic and driving forces, and we
have split the true distribution ρ into two parts, ρrel and �ρ; see equation (16).

In order to calculate the last term here, we have to calculate �ρ for the present choice of
the relevant variables. For that, we use expression (24), valid in the present case as well. First,
we notice, using the explicit expression (47) for the relevant distribution, that

∂ρrel

∂t ′
= ρeq

∂f (T )(PQ, t ′)
∂t ′

and iL̂0ρrel = 0. Then, by means of equation (34) the calculation of iL̂T ρrel becomes straight-
forward and we obtain

�ρ(t) = −
∫ t

−∞
dt ′ e−ε(t−t ′)ρeq

{
∂f (T )(t ′)
∂t ′

+
P

M

∂f (T )(t ′)
∂Q

+ β
P

M
(ŜX(Qq)− 〈X(Qq)〉eq)f (T )(t ′) + (ŜX(Qq) + Y (Q, t ′))

∂f (T )(t ′)
∂P

}
(51)

where the operator Ŝ is given by equation (25). Now we are in a position to calculate the trace
with�ρ in the right-hand side of equation (50). After some rather lengthy but simple algebra,
we get

tr{(X(Qq) + Y (Q, t))�ρ} = (〈X(Qq)〉eq + Y (Q, t))A

−
∫ t

−∞
dt ′ e−ε(t−t ′)〈�X Ŝ �X〉eq

(
β
P

M
+
∂

∂P

)
f (T )(t ′) (52)

where �X = X(Qq)− 〈X(Qq)〉eq is the fluctuation of the tip–surface force and

A = −
∫ t

−∞
dt ′ e−ε(t−t ′)

{
∂f (T )(t ′)
∂t ′

+
P

M

∂f (T )(t ′)
∂Q

+ (〈X(Qq)〉eq + Y (Q, t ′))
∂f (T )(t ′)
∂P

}
.

Using now the explicit expression for�ρ given above, equation (51), we notice thatA appears
to be exactly equal to tr{�ρ} which is equal to zero because of equation (48). Therefore, the
first term in the right-hand side of equation (52) is identically equal to zero.

Finally, substituting 0 from equation (50) into equation (49) and making use of equation
(52) for the trace with A = 0, we arrive at the following integro-differential equation for the
tip distribution function that was sought for:[
∂

∂t
+
P

M

∂

∂Q
+ (〈X(Qq)〉eq + Y (Q, t))

∂

∂P

]
f (T )(PQ, t)

= ∂

∂P

(
β
P

M
+
∂

∂P

) ∫ t

−∞
dt ′ e−ε(t−t ′)〈�X Ŝ �X〉eqf (T )(PQ, t ′). (53)
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Note that the operator

∂

∂P

(
β
P

M
+
∂

∂P

)
has been taken out of the integral since the correlation function 〈�X Ŝ �X〉eq does not depend
on the tip momentum P . This is because the evolution operator Ŝ containing the Liouville
operator of the surface L̂0 does not depend on P .

This equation is very general. Note that it also contains memory effects due to the time
integral in the right-hand side. Again, assuming that the correlation function 〈�X Ŝ �X〉eq
(which depends on the time difference s = |t − t ′|) decays much faster with time than the
distribution function f (T )(t ′) of the tip, we arrive at the Markovian description. Thus, only
times t ′ near t contribute and we can take the whole term containing f (T )(t ′) out of the integral
and calculate it at t . In this way we get a Fokker–Planck equation for the tip identical to that
obtained earlier in reference [22]:[
∂

∂t
+
P

M

∂

∂Q
+ (〈X(Qq)〉eq + Y (Q, t))

∂

∂P

]
f (T ) = γ (Q)

∂

∂P

(
β
P

M
+
∂

∂P

)
f (T ) (54)

where γ (Q) is the friction coefficient given by equation (43).
As one of the possible applications of the Fokker–Planck equation, one can consider the

equation of motion for the tip, i.e. the equation for the tip position and momentum:

Qt =
∫
Qf (T )(PQ, t) dP dQ ≡ (Q)t

Pt =
∫
Pf (T )(PQ, t) dP dQ ≡ (P )t

where the notation (· · ·)t has been used to indicate the average with respect to the tip distribution
function, f (T )(PQ, t), calculated at time t . The derivation of the equation of motion can be
carried out in exactly the same way as in reference [22] and the result is as follows:

d(P )t
dt

≡ M
d2(Q)t

dt2
= −k[(Q)t −Qeq] + (〈X(Qq)〉eq)t + Fd(t)− β

M
(Pγ (Q))t . (55)

Note that this equation, although very similar to that derived in the previous section, equation
(42), is not exactly the same. One can verify, however, that this equation becomes identical to
equation (42) if we assume that the tip distribution function is strongly peaked around its average
values Qt and Pt (cf. reference [22]). However, before going into a detailed comparison of
various forms of the kinetic (transport) equations for the tip (which will be made in section 5),
it is instructive to give yet another possible derivation of the Fokker–Planck equation.

4.2. The Fokker–Planck equation: variables P and Q

The derivation of the previous subsection was based on a specific ‘natural’ choice of the
relevant variables, such that the Fokker–Planck equation followed as a transport equation for
these variables. Then, the equation of motion for the tip, equation (55), also follows as in
reference [22]. However, we know from section 3 that the equation of motion for the tip can be
derived avoiding a rather complicated step of deriving the Fokker–Planck equation. In order to
do that, we have used another set of relevant variables, namely P andQ (alongside the system
Hamiltonian). It would be instructive to see whether the Fokker–Planck equation can be derived
using the same set of the relevant variables as in section 3. After all, we have given in this section
an expression for the true distribution function of the whole system, ρ(t) = ρrel(t) + �ρ(t),
where ρrel(t) and �ρ(t) are given by equations (6) and (26), respectively. Therefore, the tip
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distribution function, f (T )(PQ, t), can be obtained, at least in principle, from the true ρ(t) by
integrating with respect to the surface variables according to equation (44).

However, the actual calculation is more easily accomplished if, as in the previous sub-
section, we simply integrate the corresponding broken-symmetry Liouville equation with
respect to the surface variables. We will not reproduce the derivation here since the
calculation is actually very similar to that of the previous subsection (the difference is
only in the expressions for the relevant distributions used in the two cases). The result,
however, seems to be slightly different from equation (53) as there is an extra contribution,
−ε tr{ρ − ρrel} = −ε tr{�ρ}, in the right-hand side of it arising from the source term in the
Liouville equation (1). Using equation (26), we find that, oppositely to the case for the previous
choice of the relevant variables in section 4.1, tr{�ρ} �= 0 in this case:

tr{�ρ} = − β

M

∫ t

−∞
e−ε(t−t ′)/(t ′)

{
〈Ṗ 〉eq − 〈Ṗ 〉rel +

1

β

Q−Qt ′

〈Q2〉rel −Q2
t ′

}
Pt ′ dt ′ (56)

where the function /(t ′) is given by equation (14). The question that we ask is whether the
solution f (T )ε (PQ, t) of the modified Fokker–Planck equation (with the source term) tends to
that of the Fokker–Planck equation without this extra term, f (T )(PQ, t), in the ε → +0 limit.
It is not easy to answer that question. However, we believe there are at least two reasons for
which this extra term can be dropped.

First of all, one can demonstrate, applying consistently the steepest-descent method of
section 3.4, that this term is probably small. Indeed, using the exact expression for the force,
equation (28), and the steepest-descent approximation, equation (15), we get

〈Ṗ 〉eq − 〈Ṗ 〉rel � −k(Q−Qt ′) + (〈X(Qq)〉eq − 〈X(Qt ′q)〉eq)
� (Q−Qt ′)

{
−k +

d

dQt ′
〈X(Qt ′q)〉eq

}
where only the first non-vanishing term has been left in the expansion of the average force
〈X(Qq)〉eq aroundQt ′ . One then notices that the expression in the curly brackets above is the
same as in equation (A1.7) within the steepest-descent method. Therefore, if we replace this
expression with the right-hand side of equation (A1.7), then we find that it cancels out exactly
with the last term in the curly brackets in equation (56).

The second argument is based on the underlying idea of introducing the source term to
the Liouville equation [24]. Its purpose is to pick out the proper solution corresponding to
the assumed boundary conditions. Alternatively, one can drop this term in the equation and
constrain the solution by applying the boundary conditions. The two methods should give
identical results. Therefore, if we drop this term from the very beginning, we would arrive at
the Fokker–Planck equation (53) and the corresponding boundary conditions associated with
it as in the previous subsection.

That means that the extra source term in the Fokker–Planck equation can be dropped.
Thus, we conclude that the choice of the relevant variables as used in section 3 to derive the
Langevin equation for the tip results in exactly the same Fokker–Planck equation for the tip as
that of section 4.1 where the ‘natural’ choice of relevant variables was made.

5. Summary

In this paper we have considered the interaction between the tip and surface in the NC-AFM
system. Our treatment is based on the (entirely classical) model already used in the previous
work [21, 22]. A coarse-graining method has been used in references [21, 22] to account for
the non-equilibrium effects in the tip–surface system. In this paper, the exact non-equilibrium
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formalism based on the non-equilibrium statistical operator method (NESOM) [24] has been
applied. As in the coarse-graining method, the NESOM assumes a certain timescale with
respect to which the system characteristic times are considered. However, one neither needs
to know this time explicitly nor needs to assume its order of magnitude, since the timescale of
interest is implied in the particular choice of the relevant variables used.

Two sets of relevant variables have been considered. Using the first set, we have derived
the equation of motion for the tip (the Langevin equation). It has been formulated as an integro-
differential equation for the exact averages 〈Q〉t and 〈P 〉t of the tip position and momentum
calculated using the true non-equilibrium distribution function ρ(t) of the system. We stress
that the equation derived is quite general since it also contains memory effects. We have also
found that the equation obtained, equation (30), appears to be rather non-linear with respect to
the averages 〈Q〉t and 〈P 〉t . However, we have shown in section 3.4, that, to the same level of
approximation with respect to the small parameter η ∼ M−1/2, this equation can be linearized
and brought into a simpler form (40). In the Markovian approximation (no memory), the
linearized equation of motion becomes simply a differential equation for the averages and
contains a familiar friction term. The latter is given as a time integral of the autocorrelation
function of the fluctuation of the tip–surface force. Therefore, we have reproduced the main
result of the earlier treatments of references [20–22], where a much simpler coarse-graining
method was used.

Then, using a second, quite different, set of relevant variables, we have derived the Fokker–
Planck equation for the tip distribution function f (T )(PQ, t). This result is also quite general
and goes beyond the Markovian approximation (i.e. contains memory effects). Similarly to the
equation of motion for the tip, derived using the first set of the relevant variables, there is also
a friction term in the Fokker–Planck equation due to the stochastic nature of the tip–surface
interaction. It is worth mentioning here that the Fokker–Planck equation obtained appears
already in a linear form with respect to the distribution function and no additional linear-
ization has been necessary. However, one has to bear in mind that the Fokker–Planck equation
obtained is also valid in the first order with respect to the small parameter η ∼ M−1/2. In the
Markovian approximation the Fokker–Planck equation derived coincides with that obtained in
reference [22] where the coarse-graining method was used.

The approach based on the Fokker–Planck equation has an advantage as it allows one to
consider the time evolution

(")t =
∫

dP dQ f (T )(PQ, t)"(PQ)

of any dynamical variable "(PQ) which is an arbitrary function of the tip position and
momentum. In particular, we have derived another form of the equation of motion for the
tip starting from the Fokker–Planck equation which, again, in the Markovian approximation,
has been found identical to that derived in reference [22]. However, this equation of motion
appeared to be somewhat different to that derived directly in section 3 (avoiding the step
involving the Fokker–Planck equation), i.e. when using the first choice of relevant variables.

The two equations would coincide, however, if the tip distribution function (the solution
of the Fokker–Planck equation, f (T )(PQ, t)) is strongly peaked around the exact averages
〈P 〉t and 〈Q〉t [22]. As has been explained in reference [22], this is not easy to demonstrate
using a direct calculation (i.e. by solving the Fokker–Planck equation). However, our assertion
concerning the peaked structure of the tip distribution function seems to be reasonable owing
to the fact that the tip is a macroscopic object with well defined position and momentum at
every time t . However, there is also another, more fundamental, reason for that.

Indeed, the Hamiltonian of the system, used for both sets of relevant variables, is needed
to fix the temperature of the heat bath. The other variables in the first set are the tip position
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Q and momentum P . These variables are used to set up the timescale of interest (i.e. the level
of reduced description of the system)—the characteristic time which is much larger than the
phonon time and much smaller than the macroscopic time of the tip oscillations. Therefore,
using this set of relevant variables, all atomic vibrations are sampled over.

Then, in the second set of relevant variables we have used a continuous set of functions
δ(P −P0)δ(Q−Q0) in place of P andQ. As this set is based on the same information about
the system (only the same variablesP andQ are involved), it corresponds to the same timescale
and, therefore, should be considered as physically equivalent. The difference between different
descriptions (different choices of the relevant variables) will be of the next order with respect to
the small parameter of the theory being chosen, η ∼ M−1/2. This conclusion is also supported
by the fact that, if the steepest-descent method is used consistently throughout, the Fokker–
Planck equation can also be derived using the first set of relevant variables (see section 4.2). An
immediate consequence of this is that the tip distribution function, f (T )(PQ, t), will be strongly
peaked around the averages 〈P 〉t and 〈Q〉t for every t , so, within the same approximation with
respect to the small parameter η ∼ M−1/2, one has

(")t =
∫

dP dQ f (T )(PQ, t)"(PQ) = "(〈P 〉t , 〈Q〉t ) + O

(
1

M

)
for any dynamical variable "(P,Q).

Thus, all equations of motion derived in this paper using various means are equivalent
from both physical and mathematical points of view as, on one hand, they correspond to the
same timescale and also, on the other, they are valid in the first order with respect to the small
parameter η ∼ M−1/2.

We note that the method used here is rather formal. However, we believe that it should
provide a good starting point for future developments. In particular, using an explicit micro-
scopic model for the surface and the tip, it is important to calculate the correlation functions
entering the theory. This is needed not only for the calculation of the dissipation energy involved
in this particular mechanism (which can be checked experimentally), but also to validate the
Markovian approximation used in the previous publications [20–22]. However, this kind of
calculation goes far beyond the scope of this paper and will be provided elsewhere. We also
mention the adhesion hysteresis mechanism [14–19, 21] as another interesting and important
application of the NESOM. Finally, as has already been mentioned in the introduction, a
completely quantum description of the surface within the NESOM would also be highly
desirable. This is not straightforward, however, as one has to combine a classical treatment of
the tip with a quantum mechanical consideration of the surface. Work on these developments
is in progress in our laboratory.
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Appendix 1

A number of useful identities will be derived here. Differentiating both sides of equation (5)
with respect to Qt = 〈Q〉t and taking into account that F(t) depends on it (note that Z(t) is a
function of F(t) as well), we find after a straightforward calculation

dF(t)

dQt

= 1

β
(〈Q2〉rel −Q2

t )
−1 (A1.1)
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where here and in the following the notation 〈· · ·〉rel is equivalent to the average Tr{ρrel(t) · · ·}
calculated using the relevant distribution. Using this identity, one can calculate the time
derivative of F(t) as

dF(t)

dt
= dF(t)

dQt

∂Qt

∂t
= Pt

Mβ
(〈Q2〉rel −Q2

t )
−1 (A1.2)

where Pt = 〈P 〉t and use has been made here of the fact [22,24] that according to equation (2)

∂Qt

∂t
= Tr{Q̇ρ(t)} = Tr

{
P

M
ρ(t)

}
= Pt

M
. (A1.3)

We will also find useful in the following yet another identity which is derived similarly by
differentiating the average tip–surface force

〈X(Qq)〉rel = −Tr

{
ρrel(t)

∂&Qq

∂Q

}
with respect to Qt :

∂〈X(Qq)〉rel
∂Qt

= 〈XQ〉rel − 〈X〉relQt

〈Q2〉rel −Q2
t

. (A1.4)

Note that 〈Q〉rel = Qt because of the self-consistency condition (5). We also consider the
average

〈ṖQ〉rel = −Tr

{
ρrel(t)

∂Ĥ

∂Q
Q

}
.

Performing the integral
∫

dQ by parts and using the identity (9), we get

〈ṖQ〉rel − 〈Ṗ 〉relQt = − 1

β
(A1.5)

where again we have used the self-consistency condition (5). In particular, since the force Ṗ
contains the tip–surface,X(Qq), the elastic, −k(Q−Qeq), and the driving, Fd(t), forces, this
expression can also be rewritten as follows:

(〈QX〉rel −Qt 〈X〉rel)− k(〈Q2〉rel −Q2
t ) = − 1

β
. (A1.6)

Combining equations (A1.4) and (A1.6), one also has

−k +
∂〈X(Qq)〉rel

∂Qt

= − 1

β

1

〈Q2〉rel −Q2
t

. (A1.7)

Appendix 2

In this appendix we will derive the linearized form of the transport equation (40) directly by
solving the broken-symmetry Liouville equation (1) within the steepest-descent approximation,
the main ideas of which have been considered in section 3.4.

We first note that the Lagrange multipliers,V (t) andF(t), are given by the exact expression
(8) and the asymptotic one (39), respectively. Therefore, within the steepest-descent approx-
imation, the function F(t) can be expressed explicitly via Qt = 〈Q〉t . Our next step is
to calculate �ρ from equation (17). The calculation essentially repeats the one made in
section 3.2. The only difference now is that the derivative dF(t)/dt in equation (22) can be
calculated explicitly owing to the known dependence of F(t) on Qt :

dF(t)

dt
= dF(t)

dQt

Pt

M
=

[
k − ∂〈X(Qtq)〉eq

∂Qt

]
Pt

M
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(note that a relatively small derivative dFd/dt can be neglected in the calculation of ∂ρ/∂t).
One then obtains{
∂

∂t
+ iL̂

}
ρrel(t) = β

M
ρrel(t)Pt

(
X(Qq)− 〈X(Qtq)〉eq − (Q−Qt)

∂〈X(Qtq)〉eq
∂Qt

)
+
β

M
ρrel(t)(P − Pt)Tr{Ṗ �ρ(t)}

which can be compared with equation (23) for the exact calculation. This expression is then
used in equation (17) to the first order, and, after that, in the kinetic equation (18), resulting in

∂Pt

∂t
= 〈Ṗ 〉 − β

M

∫ t

−∞
dt ′ e−ε(t−t ′)Pt ′

{
〈Ṗ ŜX〉 − 〈X〉〈Ṗ 〉 − (〈QṖ 〉 −Qt 〈Ṗ 〉)∂〈X(Qtq)〉eq

∂Qt

}
(A2.1)

where by 〈· · ·〉 the averages with respect to the relevant distribution are implied. Using the
explicit expression for the force, Ṗ (see equation (28)), and the fact that

k � ∂〈X(Qtq)〉eq
∂Qt

(A2.2)

(the necessary condition for the NC-AFM system stability), the expression in the curly brackets
in equation (A2.1) reads

〈�X Ŝ �X〉 + k

[
−(〈QX〉 −Qt 〈X〉) + (〈Q2〉 −Q2

t )
∂〈X(Qtq)〉eq

∂Qt

]
. (A2.3)

Then, we replace the first term in the square brackets using equation (A1.4) and the difference
〈Q2〉 − Q2

t using equation (A1.7). Then the second term in the right-hand side of equation
(A2.3) becomes

1

β

k(∂〈X(Qtq)〉eq/∂Qt − ∂〈X(Qq)〉rel/∂Qt)

k − ∂〈X(Qtq)〉eq/∂Qt

which is zero up to terms O(1/k) ∼ O(1/M), and we are just left with the correlation function
term, 〈�X Ŝ �X〉, in the curly brackets in equation (A2.1). Since, in the same approximation,
averages with respect to the relevant distribution are equivalent to those calculated with respect
to the equilibrium distribution when Q is set equal to Qt , we arrive at the same transport
equation (40) as in section 3.4.
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